Key Concepts

Software evolution
Standard templates
Standard C++ library
Containers

Sequence containers
Associative containers
Derived containers
Algorithms

Iterators

YVYVVVYVYVYVYVYY

Function object

I 14.1 Introduction

We have seen how templates can be used
to create generic classes and functions that
could extend support for generic
programming. In order to help the C++
users in generic programming, Alexander
Stepanov and Meng Lee of Hewlett-
Packard developed a set of general-purpose
templatized classes (data structures) and
functions (algorithms) that could be used
as a standard approach for storing and
processing of data. The collection of these
generic classes and functions is called the
Standard Template Library (STL). The
STL has now become a part of the ANSI
standard C++ class library.

STL is large and complex and it is difficult to discuss all of its features in this chapter. We
therefore present here only the most important features that would enable the readers to
begin using the STL effectively. Using STL can save considerable time and effort, and lead
to high quality programs. All these benefits are possible because we are basically “reusing”
the well-written and well-tested components defined in the STL.



404 0— Object-Oriented Programming with C++

multiset An associate container for storing non-unique <set> Bidirectional
sets. (Duplicates allowed)
map An associate container for storing unique <map> Bidirectional

key/value pairs. Each key is associated with
only one value (One-to-one mapping). Allows
key-based lookup.
multimap An associate container for storing key/value <map> Bidirectional
pairs in which one key may be associated with
more than one value (one-to-many mapping).
Allows key-based lookup.

stack A standard stack. Last-in-first-out(LIFO). <stack> No iterator
queue A standard queue. First-in-first-out(FIFO). <queue> No iterator
priority— A priority queue. The first element out is <queue> No iterator

queue always the highest priority element.

Each container class defines a set of functions that can be used to manipulate its contents.
For example, a vector container defines functions for inserting elements, erasing the contents,
and swapping the contents of two vectors.

Sequence Containers

Sequence containers store elements in a linear sequence, like a line as shown in Fig. 14.3.
Each element is related to other elements by its position along the line. They all expand
themselves to allow insertion of elements and all of them support a number of operations on
them.

Element 0 Element 1 Element 2 L Last Element |+
iterator [
begin() end(}

Fig.14.3 = Elements in a sequence container

The STL provides three types of sequence containers:

# vector
#*  list
#® deque

Elements in all these containers can be accessed using an iterator. The difference between
the three of them is related to only their performance. Table 14.2 compares their performance
in terms of speed of random access and insertion or deletion of elements.



Introduction to the Standard Template Library -0405

Table 14.2 Comparison of sequence containers

Container Random Insertion or deletion in Insertion or deletion
access the middle at the ends
vector Fast Slow Fast at back
list Slow Fast Fast at front

Fast at both the ends

deque Fast Slow

Associative Containers

Associative containers are designed to support direct access to elements using keys. They
are not sequential. There are four types of associative containers:

#* set

# multiset
# map

# multimap

All these containers store data in a structure called tree which facilitates fast searching,
deletion, and insertion. However, these are very slow for random access and inefficient for
sorting.

Containers set and multiset can store a number of items and provide operations for
manipulating them using the values as the keys. For example, a set might store objects of
the student class which are ordered alphabetically using names as keys. We can search for
a desired student using his name as the key. The main difference between a set and a
multiset is that a multiset allows duplicate items while a set does not.

Containers map and multimap are used to store pairs of items, one called the key and
the other called the value. We can manipulate the values using the keys associated with
them. The values are sometimes called mapped values. The main difference between a
map and a multimap is that a map allows only one key for a given value to be stored while
multimap permits multiple keys.

Derived Containers

The STL provides three derived containers namely, stack, queue, and priority_queue.
These are also known as container adaptors.

Stacks, queues and priority queues can be created from different sequence containers.
The derived containers do not support iterators and therefore we cannot use them for data
manipulation. However, they support two member functions pop( ) and push( ) for
implementing deleting and inserting operations.



406 & Object-Oriented Programming twith C++

I 14.4 Algorithms

Algorithms are functions that can be used generally across a variety of containers for
processing their contents. Although each container provides functions for its basic operations,
STL provides more than sixty standard algorithms to support more extended or complex
operations. Standard algorithms also permit us to work with two different types of containers
at the same time. Remember, STL algorithms are not member functions or friends of
containers. They are standalone template functions.

STL algorithms reinforce the philosophy of reusability. By using these algorithms,
programmers can save a lot of time and effort. To have access to the STL algorithms, we
must include <algorithm> in our program.

STL algorithms, based on the nature of operations they perform, may be categorized as
under:

# Retrieve or non-mutating algorithms
# Mutating algorithms

# Sorting algorithms

# Set algorithms

# Relational algorithms

These algorithms are summarized in Tables 14.3 to 14.7. STL also contains a few numeric
algorithms under the header file <numeric>. They are listed in Table 14.8.

Table 14.3 Non-mutating algorithms

Operations Description

adjacent_find( ) Finds adjacent pair of objects that are equal

count( ) Counts occurrence of a value in a sequence
count_if( ) Counts number of elements that matches a predicate
equal( ) True if two ranges are the same

find( ) Finds first occurrence of a value in a sequence
find_end( ) Finds last occurrence of a value in a sequence
find_first_of( ) Finds a value from one sequence in another
find_if{ ) Finds first match of a predicate in a sequence
for_each( ) Apply an operation to each element

mismatch( ) Finds first elements for which two sequences differ
search( ) Finds a subsequence within a sequence

search_n( ) Finds a sequence of a specitied number of similar elements

Table 14.4 Mutating algorithms

Operations Description

Copy( ) Copies a sequence

copy_backward( ) Copies a sequence from the end

fill( ) Fills a sequence with a specified value

Contdi



Table 14.4 Contd

fill_n()
generate( )
generate_n( )
iter_swap( )
random_shuffle( )
remove( )
remove_copy( )
remove_copy_if( )
remove_if( )
replace( )
replace_copy( )
replace_copy_if( }
replace_if( )
reverse( !
reverse_copy( )
rotate( )
rotate_copy( )
swap( )
swap_ranges( )
transform( )
unique( )
unique_copy( )

Introduction to the Standard Template Library

0407

Fills first n elements with a specified value

Replaces all elements with the result of an operation
Replaces first n elements with the result of an operation
Swaps elements pointed to by iterators

Places elements in random order

Deletes elements of a specified value

Copies a sequence after removing a specified value
Copies a sequence after removing elements matching a predicate
Deletes elements matching a predicate

Replaces elements with a specified value

Copies a sequence replacing elements with a given value
Copies a sequence replacing elements matching a predicate
Replaces elements matching a predicate

Reverses the order of elements

Copies a sequence into reverse order

Rotates elements

Copies a sequence into a rotated

Swaps two elements

Swaps two sequences

Applies an operation to all elements

Deletes equal adjacent elements

Copies after removing equal adjacent elements

Table 14.5 Sorting algorithms

Operations

binary_search( )
equal_range( )
inplace_merge( )
lower_bound! )
make_heap( )
merge( )
nth_element( )
partial_sort( )
partial_sort_copy()
Partition( )
pop_heap( )
push_heapt )

sort( )

sort_heap( )
stable_partition( )
stable_sort( )
upper_bound( )

Description

Conducts a binary search on an ordered sequence
Finds a subrange of elements with a given value
Merges two consecutive sorted sequences

Finds the first occurrence of a specified value
Makes a heap from a sequence

Merges two sorted sequences

Puts a specified element in its proper place

Sorts a part of a sequence

Sorts a part of a sequence and then copies

Places elements matching a predicate first
Deletes the top element

Adds an element to heap

Sorts a sequence

Sorts a heap

Places elements matching a predicate first matching relative order
Sorts maintaining order of equal elements

Finds the last vccurrence of a specified value




408 — Object-Oriented Programming with C++

Table 14.6 Set algorithms

| Operations Description

includes( ) Finds whether a sequence is a subsequence of another fb

set_difference( ) Constructs a sequence that is the difference of two -
ordered sets

set_intersection( ) Constructs a sequence that contains the intersection of {
ordered sets

set_symmetric_difference() Produces a set which is the syvmmetric difference
between two ordered sets

set_union( ) Produces sorted union of two ordered sets

Table 14.7 Relational algorithms

Operations Description

equal( ) Finds whether two sequences are the same 3

lexicographical compare() Compares alphabetically one sequence with other

max( ) Gives maximum of two values

max_element( ) Finds the maximum element within a sequence

min( ) Gives minimum of two values

min_element( ) Finds the minimum element within a sequence ‘

mismatch( ) Finds the first mismatch between the elements in two *
sequences i

Table 14.8 Numeric algorithms

OUperations Description

accumulate( ) Accumulates the results of operation on a sequence !
adjacent_difference( ) Produces a sequence from another sequence %
inner_product( ) Accumulates the results of operation on a pair of sequencesy’
partial_sum( ) Produces a sequence by operation on a pair of sequences

L PO TR S R L

I14.5 Iterators

Iterators behave like pointers and are used to access container elements. They are often
used to traverse from one element to another, a process known as iterating through the
container.

There are five types of iterators as described in Table 14.9.

Table 14.9 [terators and their characteristics

Iteratoi Access meikod  Directioxn of move:ncni I'C capability Remark :
Input Linear Forward only Read only Cannot he saved |
Output Linear Forward only Write only Cannot be saved |
Forward Linear Forward only Read/Write Can be saved
Bidirectional Linear Forward and backward Read/Write Can be saved
Random Random Forward and backward Read/Write Can be saved
O S e e N b e O Nt N N S ot s N s o .




Introduction to the Standard Template Library 9409

Different types of iterators must be used with the different types of containers (See
Table 14.1). Note that only sequence and associative containers are traversable with iterators.

Each type of iterator is used for performing certain functions. Figure 14.4 gives the
functionality Venn diagram of the iterators. It illustrates the level of functionality provided
by different categories of iterators. '

random access

bidirectional

forward

Fig. 144 < Functionality Venn diagram of iterators l

The input and output iterators support the least functions. They can be used only to
traverse in a container. The forward iterator supports all operations of input and output
iterators and also retains its position in the container. A bidirectional iterator, while
supporting all forward iterator operations, provides the ability to move in the backward
direction in the container. A random access iterator combines the functionality of a
bidirectional iterator with an ability to jump to an arbitrary location. Table 14.10 summarizes
the operations that can be performed on each iterator type.

Table 14.10 Operations supported by iterators

Iterator Element access Read Write Increment Comparison
operaiion

Input -> v="%p ++ == I=

Output *p=v ++

Forward -> v="*p *p=v ++ ==, I=

Bidirectional > v =%*p *p=v ++, - - = 1=

Random access ->, [] v =7*p *p=v o, - -y o+, - ==, 1=, <, >

|14.6 Application of Container Classes

It is beyond the scope of this book to examine all the containers supported in the STL and
provide illustrations. Therefore, we illustrate here the use of the three most popular
containers, namely, vector, list, and map.



412e Object-Oriented Programming with C++

display(v);

// Removing 4th and 5th elements
v.erase(v.begin()+3,v.begin()+5); // Removes 4th and 5th element

// Display the contents

cout << "\nContents after deletion: \n";
display(v);

cout << "END\n";

return(0);

Program 14.1

Given below is the output of Program 14.1:
Initial size = 0

Enter five integer values: 12 3 45
Size after adding 5 values: 5§
Current contents:

1 2 3 45

Size = 6
Contents now:
1 2 3 4 5 6

Contents after inserting:
1 2 3 9 4 5 6

Contents after deletion:
1 2 3 5 6
END

The program uses a number of functions to create and manipulate a vector. The member
function size() gives the current size of the vector. After creating an int type empty vector
v of zero size, the program puts five values into the vector using the member function
push_back(). Note that push_back() takes a value as its argument and adds it to the back
end of the vector. Since the vector v is of type int, it can accept only integer values and
therefore the statement

v.push_back(6.6);

truncates the values 6.6 to 6 and then puts it into the vector at its back end.



Introduction to the Standard Template Library 0413

The program uses an iterator to access the vector elements. The statement
vector<int> :: iterator itr = v.begin();
declares an iterator itr and makes it to point to the first position of the vector. The statements

itr = itr + 3;
v.insert(itr,9);

inscrts the value 9 as the fourth element. Similarly, the statement
v.erase(v.begin()+3, v.begin()+5);

deletes 4" and 5" elements from the vector. Note that erase(m,n) deletes only n-m elements
starting from m"" element and the n'" element is not deleted.

The elements of a vector may also be accessed using subscripts (as we do in arrays).
Notice the use of v[i] in the function display() for displaying the contents of v. The call
v.size() in the for loop of display() gives the current size of v.

Lists

The list is another container that is popularly used. It supports a bidirectional, linear list
and provides an efficient implementation for deletion and insertion operations. Unlike a
vector, which supports random access, a list can be accessed sequentially only.

Bidirectional iterators are used for accessing list elements. Any algorithm that requires
input, output, forward, or bidirectional iterators can operate on a list. Class list provides
many member functions for manipulating the elements of a list. Important member functions
of the list class are given in Table 14.12. Use of some of these functions is illustrated in
Program 14.2. Header file <list> must be included to use the container class list.

Fincludo <icstream>
#includa <list>

"

#include <ostdlib>  // For using rand() function
using namespace std;

veid display(list<int> &lst)
1
Tist<int> :: iterator p;

(Contd)



414 ¢

}

for(p = 1st.begin(); p != Ist.end(); ++p)

cout << *p << ", H
cout << "\n\n";

int main()

{

Tist<int> listl; // Empty list of zero length
Vist<int> 1ist2(5); // Empty list of size §

for(int i=0;i<3;i++)
Tistl.push_back(rand()/100);

list<int> :: jterator p;

for(p=list2.begin(); p!=list2.end();++p)
*p = rand()/100;

cout << "Listl \n";

display(listl);

cout << "List2 \n";

display{1ist2);

// Add two elements at the ends of listl
1istl.push front(100);
listl.push_back(200);

/! Remove an element at the front of list2
tist2.pop_front();

cout << "Now Listl \n";
display(listl);
cout << "Now List2 \n";
display(list2);

list<int> 1istA, 1istB;
1istA = 1istl;
1istB = 1ist2;

"

// Merging two lists(unsorted)
Tistl.merge(list2); v
cout << "Merged unsorted lists \n";
display(listl);

Object-Oriented Programming with C++

{Contd)



Introduction to the Stundard Template Library — 415

// Sorting and merging
listA.sort();

listB.sort();

TistA.merge(1istB);

cout << "Merged sorted lists \n";
display{1istA);

// Reversing a list
listA.reverse();

cout << "Reversed merged list \n";
display(1istA);

return(0);

Program 14.2

Output of the Program 14.2 would be:

Listl
0, 184, 63,

List2
265, 191, 157, 114, 293,

Now Listl
100, 0, 184, 63, 200,

Now List2
191, 157, 114, 293,

Merged unsorted lists
100, 0, 184, 63, 191, 157, 114, 200, 293,

Merged sorted lists
0, 63, 100, 114, 157, 184, 191, 200, 293,

Reversed merged list
293, 200, 191, 184, 157, 114, 100, 63, 0,

The program declares two empty lists, list1 with zero length and list2 of size 5. The list1
is filled with three values using the member function push_back() and math function
rand(). The list2 is filled using a list type iterator p and a for loop. Remember that



416 0— Object-Oriented Programming with C++

list2.begin() gives the position of the first element while list2.end() gives the position
immediately after the last element. Values are inserted at both the ends using push_front()
and push_back() functions. The function pop_front() removes the first element in the
list. Similarly, we may use pop_back() to remove the last element.

The objects of list can be initialized with other list objects like

"

TistA
1istB

Tistl;
1ist2;

1]

The statement
Tistl.merge(list2);
simply adds the list2 elements to the end of list1. The elements in a list may be sorted in
increasing order using sort() member function. Note that when two sorted lists are merged,
the elements are inserted in appropriate locations and therefore the merged list is also a

sorted one.

We use a display() function to display the contents of various lists. Note the difference
between the implementations of display() in Program 14.1 and Program 14.2.

Table 14.12 Important member functions of the list class

Function Task
back( ) Gives reference to the last element
begin( ) Gives reference to the first element
clear( ) Deletes all the elements
empty( ) Decides if the list is empty or not
end( ) Gives reference to the end of the list
erase( ) Deletes elements as specified
insert( ) Inserts elements as specified
merge( ) Merges two ordered lists
pop_back( ) Deletes the last element
pop_front( ) Deletes the first element
push_back( ) Adds an element to the end
push_front( ) Adds an element to the front
remove( ) Removes elements as specified
resize( ) Modifies the size of the list
reverse( ) Reverses the list
size( ) Gives the size of the list
sort( ) Sorts the list
splice( ) Inserts a list into the invoking list .
swap( ) Exchanges the elements of a list with those in the invoking list |
unique( ) Deletes the duplicating elements in the list




Introduction to the Standard Template Library 417

Maps

A map is a sequence of (key, value) pairs where a single value is associated with each
unique key as shown in Fig. 14.5. Retrieval of values is based on the key and is very fast.
We should specify the key to obtain the associated value.

key 2 Value 2
(o2

W Value N

¥

Fig. 14.5 < The key-value pairs in a map

A map is commonly called an associative array. The key is specified using the subscript
operator | | as shown below:

phone{ "John" ] = 1111;

This creates an entry for "John" and associates(i.e. assigns) the value 1111 to it. phone is
a map object. We can change the value, if necessary, as follows:

phone{ "John" ] = 9999;

This changes the value 1111 to 9999. We can also insert and delete pairs anywhere in
the map using insert( ) and erase( ) functions. Important member functions of the map
class are listed in Table 14.13.

Table 14.13 Important member functions of the map class

Function Task

begin( ) Gives reference to the first element

clear( ) Deletes all elements from the map

empty( ) Decides whether the map is empty or not

end( ) Gives a reference to the end of the map

erase( ) Deletes the specified elements

find( ) Gives the location of the specified element

insert( ) Inserts elements as specified

size( ) Gives the size of the map

swapl( ) Exchanges the elements of the given map with those of the 5!

invoking map 5

SR SRR S N e o O A PR SR SIS P RS R

Program 14.13 shows a simple example of a map used as an associative array. Note that
<map> header must be included.



418@ Object-Oriented Programming with C++

#include <iostream>
#include <map>
#include <string>

using namespace std;
typedef map<string,int> phoneMap;

int main()
{
string name;
int number;
phoneMap phone;
cout << "Enter three sets of name and number \n";

for(int i=0;i<3;i++)

{

cin >> name; // Get key
¢in >> number; // Get value
phone[name] = number; // Put them in map

}

phone["Jacob"] = 4444, /! Insert Jacob

phone.insert(pair<string,int> ("Bose", 5555));
int n = phone.size();

cout << "\nSize of Map: " << n << "\n\n";

cout << "List of telephone numbers \n";
phoneMap::iterator p;

for(p=phone.begin(); p!=phone.end(); p++)

{
cout << (*p).first << " " << (*p).second << "\n";
}
cout << "\n";
cout << "Enter name: "; /! Get name
¢in >> name;
number = phonefname]; // Find number

cout << "Number: " << number << "\n";

return 0;

Program 14.3




Introduction to the Standard Template Library 9419

Output of the Program 14.3 would be:

Enter three sets of name and number:
Prasanna 1111

Singh 2222

Raja 3333

Size of Map: 5

List of telephone numbers
Bose 5555

Jacob 4444
Prasanna 1111
Kaja 3333
Singh 2222

Enter name: Raja
Number: 3333

The program first creates phone map interactively with three names and then inserts
two more names into the map. Then, it displays all the names and their telephone numbers
available in the map. Now the program requests the user to enter the name of a person. The
program looks into the map, using the person name as a key, for the associated number and
then prints the number.

r7.o0le

That the names are printed in alphabetical order, although the original data was not.
The list is automatically sorted using the key. In our example, the key is the name of
person.

We can access the two parts of an entry using the members first and second with an
iterator of the map as illustrated in the program. That is,

{*p).first
gives the key, and
(*p) .second

gives the value.

|14.7 Function Objects

A function object is a function that has been wrapped in a class so that it looks like an object.
The class has only one member function, the overloaded ( ) operator and no data. The class
is templatized so that it can be used with different data types.



420 0— Object-Oriented Programming with C++

Function objects are often used as arguments to certain containers and algorithms. For
example, the statement

sort(array, array+5, greater<int>());

uses the function object greater<int>( ) to sort the elements contained in array in
descending order.

Besides comparisons, STL provides many other predefined function objects for performing
arithmetical and logical operations as shown in Table 14.14. Note that there are function
objects corresponding to all the major C++ operators. For using function objects, we must
include <functional> header file.

Table 14.14 STL function objects in <functional>

Function object Type Description
divides<T> arithmetic
equal_to<T> relational
greater<T> relational
greater_equal<T> relational
less<T> relational
less_equal<T> relational
logical_and<T> logical
logical not<T> ‘ logical
logical_or<T> logical
minus<T> arithmetic
modulus<T> arithmetic
negate<T> arithmetic
not_equal_to<T> relational
plus<T> arithmetic
multiplies<T> arithmetic
Tr——emTY 5 R R N s o Gl 6 a e e T —

ikt Bus R A s ai NI S B L s e S SR R R s

Note: The variables x and vy represent objects of class T passed to the function object as
arguments.

Program 14 .4 illustrates the use of the function object greater<>() in sort( ) algorithm.

#include <iostream>

#include <algorithm>

#include <functional>
using namespace std;

int main()

{
int x[] = {10,50,30,40,20};
int y[] {70,90,60,80};

(Contd)



Introduction to the Standard Template Library 9421

sort(x,x+5,greater<int>());
sort(y,y+4);
for(int i=0; i<5; i++)

cout << x[i] << ™ ";
cout << "\n";
for(int j=0; j<4; j++)

cout << y[j] << " "3
cout << "\n";
int z[9];
merge(x,x+5,y,y+4,2);
for(i=0; i<9; i++)

cout << z[i] << " "
cout << "\n";
return(0);

Program 14.4

Output of Program 14.4:
50 40 30 20 10
60 70 80 90
50 40 30 20 10 60 70 80 90

rote

The program creates two arrays x and y and initializes them with specified values. The
program then sorts both of them using the algorithm sort( ). Note that x is sorted
using the function object greater<int>( ) and y is sorted without it and therefore the
elements in x are in descending order.

The program finally merges both the arrays and displays the content of the merged array.
Note the form of merge() function and the results it produces.

SUMMARY

&> A collection of generic classes and functions is called the Standard Template
Library (STL). STL components are part of C++ standard library.

¢> The STL consists of three main components: containers, algorithms, and
iterators.

&> Containers are objects that hold data of same type. Containers are divided into
three major categories: sequential, associative, and derived.



4220

<> Container classes define a large number of functions that can be used to
manipulate their contents.

& Algorithms are standalone functions that are used to carry out operations on
the contents of containers, such as sorting, searching, copying, and merging.

&

VVYVVYVYVYVYVVYVYYVYYYYVYVYYVYYVYVYVYVYY

Iterators are like pointers. They are used to access the elements of containers
thus providing a link between algorithms and containers. Iterators are defined

Object-Oriented Programming with C++

for specific containers and used as arguments to algorithms.

Certain algorithms use what are known as function objects for some operations.
A function object is created by a class that contains only one overloaded operator

() function.

<algorithm>
<cstdlib>

<deque>
<functional>
<list>

<map>

<numeric>
<queue>

<set>

<string>

<stack>

<vector>
algorithms
associative containers
bidirectional iterator
container adaptors
containers

deque

derived containers
forward iterator
function object
generic programming

Key Terms

VVYVVYVVYYYVYVYVVYVYYYVYVYYVYYVYY

input iterator
iterators

keys

linear sequence

list

map

mapped values
multimap

multiple keys
multiset

mutating algorithms
namespace
non-mutating algorithms
numeric algorithms
output iterator
priority_queue
queue

random access iterator
relational algorithms
sequence containers
set

set algorithms



Y VVYVYY

Introduction 1o the Standard Template Library 0423

sorting algorithms » templatized classes
stack >  tree

standard C++ library »  using namespace
standard template library » values

templates » vector

I Review Questions

4.1

14.10
14.11

14.12

What (s STL? How is it different from the C++ Standard Librarv? Why is it
gaining importance among the programmers?

List the three types of containers.

What s the muajor difference between a sequence container and an associative
container?

What are the best situations for the use of the sequence containers?

What are the best situutions for the use of the associative containers?

What is an iterator? What are its characteristics?

What is an algorithin? How STL algorithms are different from the conventional
algorithms?

Haw are the STL algnrithms implemented?

Distinguush between the foliowong.

tar lists and cectors

b sets and muaps

(er maps and multimaps

tdr queae and degue

ted arrays and vectors

Compare the performance cnaracteristics of the three sequence containers.
Sugpest appropriate conteiners for the following applications:

ta) Insertion at the buck of a container.

(hy Frequent insertions and deletion at both the ends of a container.

(¢) Frequent insertions and deletions in the middle of a container.

td) Frequent randonm access of elements.

State whether the following statements are true or false.

fa) An iterator is a generclized form of pointer.

(b) One purpose of an iterator is to connect aigorithms to containers.

‘¢r STL algorithms are member functions of containers.

(dy The size of a vector dues not change when its elements are removed.

tey STL algorithms can be used with c-like arrays.

i

Y An irerator can aliavs move jorward or backward through a container.



424¢ Object-Oriented Programming with C++

(g) The member function end() returns a reference to the last element in the
container.

(h) The member function back() removes the element at the back of the container.
(i) The sort() algorithm requires a random-access iterator.
(j) A map can have two or more elements with the same key value.

I Debugging Exercises

14.1 Identify the errror in the following program.

#include <iostream.h>
#include <vector>

#define NAMESIZE 40
using namespace std;

class EmployeeMaster

{

private:
char name[NAMESIZE];
int id;
pubtic:
EmployeeMaster()
{
strcpy(name, "");
id = 0;
1

EmployeeMaster(char name[NAMESIZE], int id)
:id(id)
{

}

strcpy(this->name, name);

EmployeeMaster* getValuesFromUser()

{

EmployeeMaster *temp = new EmployeeMaster();

cout << end]l << "Enter user name : ";
cin >> temp->name;
cout << endl << "Enter user ID : “;

cin >> temp->id;
return temp;



0425

}s

Introduction to the Standard Template Library

void displayRecord()
{

cout << endl << "Name : " << name;
cout << endl << "ID : " << id << endl;

void main()

{

}

vector <EmployeeMaster*> emp;

EmployeeMaster *temp = new EmployeeMaster();
emp.push_back(getValuesFromUser());
emp[0]->disptayRecord();

delete temp;

temp = new EmployeeMaster("AlanKay", 3);
emp.push_back(temp);
emp[emp.capacity()]->displayRecord();
emp[emp.size()]->displayRecord(};

14.2 Identify the error in the following program.

#include <iostream>
#include <vector>

using namespace std;

int main()

{

vector <int> vl;
vl.push back(10);
vl.push back(30);

vector <int> v2;
v2.push_back(20);
v2.push back(40);

if(vl==v2)
cout<<"vectors are equal";
else
cout<<"vectors are unequal\t";
vl.swap(20);
for(int y=0; y<vl.size(); y++)



426 @ Object-Oriented Programming with C++

cout<<"V1="<<v] [y] <gh 1 :
cout<<"V2="<<y?2 [y] << N :

1

]
return 0;

!
14.3 Identify the error in the following program.

#include<iostream>
#include<list>

void main()

{

list <int> 11;

11.push_front(10);
11.push _back(20);
11.push_front(30);
11.push_front(40);
11.push_back(10);
11.pop_front(40};

11.reverse();
11.unique();

}

l Programming Exercises

14.1 Write a code segment that does the following:
(a) Defines a vector v with a maximum size of 10
(b) Sets the first element of v to 0
(c) Sets the last element of v to 9
(d) Sets the other elements to 1
(e) Displays the contents of v

14.2 Write a program using the find() algorithm to locate the position of a specified
value in a sequence container.

14.3 Write a program using the algorithm count() to count how many elements in a
container have a specified value.

14.4 Create an array with even numbers and a list with odd numbers. Merge two
sequences of numbers into a vector using the algorithm merge(). Display the
vector.



14.5

14.6
14.7

14.8

Introduction to the Standard Template Library €427

Create a student class that includes a student's first name and his
roll_number. Create five objects of this class and store them in a list thus creating

a phone_lit. Write a program using this list to display the student name if the
roll_number is given and vice-versa.

Redo the Exercise 14.17 using a set.

A table gives a list of car models and the number of units sold in each type in a
specified period. Write a program to store this table-in a suitable container, and
to display interactively the total value of a particular model sold, given the unit-
cost of that model. ‘

Write a program that accepts a shopping list of five items from the keyboard and
stores them in a vector. Extend the program to accomplish the following:

(a) To delete a specified item in the list

(b) To add an item at a specified location

(¢) To add an item at the end

(d) To print the contents of the vector



Key Concepts

C-strings

The string class

Creating string objects
Manipulating strings
Relational operations on strings
Comparing strings

String characteristics

YVVYVYVYYVYVY

Swapping strings

15.1 Introduction

A string is a sequence of characters. We
know that C++ does not support a built-in
string type. We have used earlier null-
terminated character arrays to store and
manipulate strings. These strings are called
C-strings or C-style strings. Operations on
C-strings often become complex and
inefficient. We can also define our own
string classes with appropriate member
functions to manipulate strings. This was
illustrated in Program 7.4 (Mathematical
Operation of Strings).

ANSI standard C++ now provides a new
class called string. This class improves on
the conventional C-strings in several ways.

In many situations, the string objects may be used like any other built-in type data. Further,
although it is not considered as a part of the STL, string is treated as another container
class by C++ and therefore all the algorithms that are applicable for containers can be used
with the string objects. For using the string class, we must include <string> in our program.

The string class is very large and includes many constructors, member functions and
operators. We may use the constructors, member functions and operators to achieve the

following:



LR 3K 2 JE % JF 3 AR J

Manipulating Strings 0429

Creating string objects

Reading string objects from keyboard
Displaying string objects to the screen
Finding a substring from a string
Modifying string objects

Comparing string objects

Adding string objects

Accessing characters in a string
Obtaining the size of strings

And many other operations

Table 15.1 gives prototypes of three most commonly used constructors and Table 15.2
gives a list of important member functions. Table 15.3 lists a number of operators that can
be used on string objects.

Table 15.1 Commonly used string constructors

; Constructor

Stringt):

Usage

For creating an empty string

String(const chat *str); For creating a string object from a null-terminated string
String(const string & str); For creating a string object from other string object

Table 15.2 [mportant functions supported by the string class
Function Task
append() Appends a part of string to another string
Assign() Assigns a partial string
at() Obtains the character stored at a specified location

Begin()
capacity()
comparel)
empty()
end()
erase()
find()
insert()
length)
max sizet)
replacel)
resizel()

sizel)

Returns a reference to the start of a string

Gives the total elements that can be stored.

Compares string against the invoking string

Returns true if the string is empty; Otherwise returns false
Returns a reference to the end of a string

Removes characters as specified

Searches for the occurrence of a specified substring

Inserts characters at a specified location

Gives the number of elements in a string

Gives the maximum possible size of a string object in a give system
Replace specified characters with a given string

Changes the size of the string as specified

Gives the number of characters in the string

Swaps the given string with the invoking string



430@ Object-Oriented Progreorming vidth C++

Table 15.3 Operators for siring objects

Operator Meaning
= Assignment ;
+ Concatenation
+= Coneatenation assignment
= = Equality ;
1= Inequality W
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
] Subseription
<< Outiput

Tnput

l15.2 Creating (string) Objects

We can create string objects in a number of ways as illustrated below:

string sl; // Using constructor with no argument
string s2("xyz"); // Using one-grgument constructor

sl = s2; // Assigning string objects

s3 = "abc" + s2 // Concatenating strings

cin >> sl; // Reading through keyboard (cne word)
getline(cin, si); // Reading through keyboard a line of text

The overloaded + operator concatenates two string objects. We can also use the operater
+=to append a string to the end of a string. Examples:

s3 += sl; /] s3 =53 + sl
s3 += "abc"; // s3 = s3 + "abc”

The operators << and >> are overloaded to handle input and output of string objects.
Examples:

cin >> s2; /] Input to string object {one word)
cout << s2; // Displays the contents of s2
getline(cin, s2); // Reads embedded blanks

rnote

Using cin and >> operator we can read only one word of a string while the getline()
function permits us to read a line of text containing embedded blanks.

Program 15.1 demonstrates the several ways of creating string obhjects in a program.



Manipulating Strings 0431

#include <iostream>
#include <string>

using namespace std;

int main()

{
// Creating string objects
string sl; // Empty string object
string s2(" New"); // Using string constant

string s3(" Delhi");

// Assigning value to string objects
sl = s2; // Using string object
cout << *S1 = " << sl << "\n";

// Using a string constant
sl = "Standard C++"; Tl
cout << "Now S1 = " << sl << "\n";

// Using another object
string s4(sl);
cout << "S4 = " << s4 << "\n\n";

// Reading through keyboard

cout << "ENTER A STRING \n";

cin >> s4; // Delimited by blank space
cout << "Now S4 = " << s4 << "\n\n";

// Concatenating strings
sl = s2 + s3;
cout << "S1 finally contains: " << sl << "\n";

return 0;

PROGRAM 15.1

The output of Program 15.1 would be:

S1 = New
Now S1 = Standard C++
S4 = Standard C++



432 Object-Oriented Programming with C++
ENTER A STRING
COMPUTER CENTRE
Now S4 = COMPUTER

S1 finally contains: New Delhi

|15.3 Manipulating String Objects

We can modify contents of string objects in several ways, using the member functions such
as insert(), replace(), erase(), and append(). Program 15.2 demonstrates the use of some
of these functions.

#include <iostream
#include <string>

using namespace std;

int main()

{
string s1("12345");
string s2("abcde");

cout << "Qriginal Strings are: \n";
cout << "Sl: " << sl << "\n";
cout << "S2: " << s2 << "\n\n";

// Inserting a string into another

cout << "Place $2 inside S1 \n";
sl.insert(4,s2);

cout << "Modified Sl: " << sl << "\n\n";

// Removing characters in a string

cout << "Remove 5 Characters from SI \n";
sl.erase(4,5);

cout << “"Now S1: " << sl << "\n\n";

// Replacing characters in a string
cout << "Replace Middle 3 Characters in S2 with S1 \n";
(Contd)



Manipulating Strings 9433

s2.replace(1,3,s1);
cout << "Now S2: " << s2 << "\n";

return 0;

}

PROGRAM 15.2

The output of Program 15.2 given below illustrates how strings are manipulated using
string functions.

Original Strings are:
S1: 12345
S2: abcde

Place S2 inside S1
Modified S1: 1234abcde5

Remove 5 Characters from S1
Now S1: 12345

Replace Middle 3 Characters in S2 with S1
Now S2: al2345e

rote
Gnalyse how arguments of each function used in this program are implemented. )

I 15.4 Relational Operations

A number of operators that can be used on strings are defined for string objects
(Table 15.3). We have used in the earlier examples the operators = and + for creating objects.
We can also apply the relational operators listed in Table 15.3. These operators are overloaded
and can be used to compare string objects. The compare() function can also be used for this

purpose.

#include <iostream>
#include <string>

using namespace std;

(Contd)



434 Object-Oriented Programming with C++

int main()

{
string s1("ABC");
string s2("XYZ");
string s3 = sl + s2;

if(sl 1= s2)
cout << "sl is not equal to s2 \n";
if(sl > s2)

cout << "s1 greater than s2 \n";

else
cout << "s2 greater than sl \n";

if(s3 == sl + s2)
cout << "s3 is equal to sl+s2 \n\n";
int x = sl.compare(s2);
if(x == 0)
cout << "sl == s2 \n";
else if(x > 0)
cout << "sl > s2 \n";
else // x <0
cout << "sl < s2 \n";

#!

return 0;

PROGRAM 15.3

Program 15.3 shows how these operators are used.
This program produces the following output:

sl is not equal to s2

sZ2 greater than sl

s3 is equal to sl+s2

sl < s2

I 15.5 String Characteristics

Class string supports many functions that could be used to obtain the characteristics of
strings such as size, length, capacity, etc. The size or length denotes the number of elements



Manipulating Strings -0435

currently stored in a given string. The capacity indicates the total elements that can be
stored in the given string. Another characteristic is the maximum size which is the largest
possible size of a string object that the given system can support. Program 15.4 illustrates
how these characteristics are obtained and used in an application.

#include <iostream>
#include <string>

using namespace std;

void display(string &str)

{
cout << "Size = " << str.size() << "\n";
cout << "Length = " << str.length() << "\n";
cout << "Capacity = " << str.capacity() << "\n";
cout << "Maximum Size = " << str.max_size() << "\n";
cout << "Empty: " << (str.empty() ? "yes" : "no");
cout << "\n\n";

}

int main()

{

string strl;

cout << "Initial status: \n";
display(strl});

cout << "Enter a string (one word) \n";
¢cin >> strl;

cout << "Status now: \n";
display(strl);

strl.resize(15);

cout << "Status after resizing: \n";
display(strl);

cout << "\n";

return 0;

PROGRAM 15.4

Shown below is the output of Program 15.4:

Initial status:
Size = 0



436 00— Object-Oriented Programming with C++

Length = 0

Capacity = 0

Maximum Size = 4294967293
Empty: yes

Enter a string (one word)
INDIA

Status now:

Size = 5

Length = 5

Capacity = 31
Maximum Size = 4294967293
Empty: no

Status after resizing:
Size = 15

Length = 15

Capacity = 31

Maximum Size = 4294967293
Empty: no

The size and length of 0 indicate that the string strl contains no characters. The size and
length are always the same. The strl has a capacity of zero initially but its capacity has
increased to 31 when a string is assigned to it. The maximum size of a string in this system
is 4294967293. The function empty() returns true if strl is empty; otherwise false.

|15.6 Accessing Characters in Strings

We can access substrings and individual characters of a string in several ways. The string
class supports the following functions for this purpose:

at() for accessing individual characters
substr() for retrieving a substring
find() for finding a specified substring

find_first of() forfinding the location of first occurrence of the specified character(s)
find_last_of() for finding the location of last occurrence of the specified character(s)

We can also use the overloaded [ ] operator (which makes a string object look like an
array) to access individual elements in a string. Program 15.5 demonstrates the use of some
of these functions.

#include <iostream>
#include <string>

(Contd)



Manipulating Strings 0437

using namespace std;

int main()

{ .
string s("ONE TWO THREE FOUR");

cout << "The string contains: \n";
for(int i=0;i<s.length{);i++)
cout << s.at(i); // Display one character
cout << "\nString is shown again: \n";
for(int j=0;j<s.length();j++)
cout << s[il;

int x1 = s.find(*TW0");
cout << "\n\nTWO is found at: " << x1 << "\n";

int x2 = s.find_first_of('T');
cout << "\nT is found first at: " << x2 << "\n";
int x3 = s.find last of ('R');
cout << "\nR is last found at: " << x3 << "\n";

cout << "\nRetrieve and print substring TWO \n";

cout << s.substr(x1,3);
cout << "\n";

return 0;

PROGRAM 15.5

Shown below is the output of Program 15.5:

The string contains:

ONE TWO THREE FOUR

String is shown again:

ONE TWO THREE FOUR

TWO is found at: 4

T is found first at: 4

R is last fount at: 17

Retrieve and print substring TWO
TWO



4400— Object-Oriented Programming with C++

The statement
int x = sl.compare(s2);

compares the string s1 against s2 and x is assigned 0 if the strings are equal, a positive
number if s1 is lexicographically greater than s2 or a negative number otherwise.

The statement
int a = sl.compare(0,2,s2,0,2);

compares portions of s1 and s2. The first two arguments give the starting subscript and
length of the portion of s1 to compare to s2, that is supplied as the third argument. The
fourth and fifth arguments specify the starting subscript and length of the portion of s2 to be
compared. The value assigned to a is 0, if they are equal, 1 if substring of sl is greater than
the substring of s2, —1 otherwise.

The statement

s2.swap(s2);

exchanges the contents of the strings s1 and s2.

H

SUMMARY -
\ "

& Manipulation and use of C-style strings become complex and inefficient. ANSI C++ provides
a new class called string to overcome the deficiencies of C-strings.

<> The string class supports many constructors, member functions and operators for creating
and manipulating string objects. We can perform the following operations on the strings:

Reading strings from keyboard

Assigning strings to one another

Finding substrings

Modifying strings

Comparing strings and substrings

Accessing characters in strings]

Obtaining size and capacity of strings

Swapping strings

Sorting strings



<string>
append()
assign()

at()

begin()
capacity
capacity()
compare()
comparing strings
C-strings
C-style strings
empty()

end()

erase()

find ()
find_first_of()
find_last_of()
getline()

VY VYYVYVYYYYYYYYYVYVYY

I Review Questions

Manipulating Strings

—e 441

Key Terms

YVYYVYVYVYYVYYYYYYYYYYVYY

insert()

length

length()
lexicographical
max_size()
maximum size
relational operators
replace()

size

size()

string

string class

string constructors
string objects
substr()

substring

swap()

swapping strings

15.1 State whether the following statements are TRUE or FALSE:
(a) For using string class, we must include the header <string>.

(b) string objects are null terminated.

(¢) The elements of a string object are numbered from 0.

(d) Objects of string class can be copied using the assignment operator.

(e) Function end() returns an iterator to the invoking string object.

15.2 How does a string type string differ from a C-type string?

15.3 The following statements are available to read strings from the keyboard.

(a) cin >> sl;

(b) getline(cin, sl1);
where s1 is a string object. Distinguish their behaviour.



442e

Object-Oriented Programming with C++

154

15.5

15.6

15.7

Consider the following segment of a program:
string s1("man"), s2, s3;
s2.assign(sl);
s3 = sl;
string s4("wo" + sl);
s2 += "age";
s3.append("ager");
s1{0] = 'v';

State the contents of the objects 81, 82, 83 and s4 when executed.

We can access string elements using

(a) at() function

(b) subscript operator [ ]

Compare their behaviour.

What does each of the following statements do?

(a) s.replace(n,1,"/");

(b) s.erase(10);

(c) sl.insert(10,s2);

(d) int x = sl.compare(0, s2.size(), s2);

(e) s2 = sl.substr(10, 5);

Distinguish between the following pair of functions.

(a) max_size() and capacity()

(b)  find() and rfind()

(¢)  begin() and rbegin()

I Debugging Exercises

15.1

}
15.2

Identify the error in the following program.

#include <iostream.h>
#include <string>

using namespace std;

void main()
{
string strl("ghi");
string str2("abc" + "def");
str2+=strl;
cout << str2.c_str();

Identify the error in the following program.

#include <ijostream.h>



Manipulating Strings 0443

#include <string>

using namespace std;

void main()

{
string strl("ABCDEF");
string str2("123");
string str3;

strl.insert(2, str2);
strl.erase(2,2);
stri.replace(2,str2);

cout << strl.c str();
cout << endl;

}
15.3 Identify the error in the following program.

#include <iostream>
#include <string>

using namespace std;

class Product
{
int iProductNumber;
string strProductName;
public:
Product ()
{
}

Product(const int &number, const string &name)

{

setProductNumber (number);
setProductName(name);

}

void setProductNumber(int n)

{

iProductNumber = n;



444 ¢ Object-Oriented Programming with C++

}

void setProductName({const string str)

{

strProductName = str;

int getProductNumber()
{
return iProductNumber;

}

const string getProductName()

{

return strProductName ;

Product® operator = (Product &source)

{
setProductNumber(source.iProductNumber);
string strTemp = source.strProductName;
setProductName(strTemp);
return *this;

}

void display()
{
cout << "ProductName : " << getProductName{);
cout << " "

cout << "ProductNumber :
cout << endl;

<< getProductNumber();

s

void main()

{
Product pl(1, 5);
Product p2(3, "Dates");
Product p3;
p3 = p2 = pl;



15.4

Manipulating Strings @ 445

p3.display();
p2.display();
}
Find errors, if any, in the following segment of code.
int len = sl. length();
for (int i=0; 1<len;++i)
cout << sl.at[];

[Programming Exercises

15.1

15.3

15.4

15.5

15.7

15.8

15.9

Write a program that reads the name
Martin Luther King

from the keyboard into three separate string objects and then concatenates them
into a new string object using

(a) + operator and

(b) append() function.

Write a program using an iterator and while() construct to display the contents
of a string object.

Write a program that reads several city names from the keyboard and displays
only those names beginning with characters "B" or "C".

Write a program that will read a line of text containing more than three words
and then replace all the blank spaces with an underscore(_).

Write a program that counts the number of occurrences of a particular character,
say ‘e, in a line of text.

Write a program that reads the following text and counts the number of times
the word "It" appears in it.

It is new. It is singular.
It is simple. It must succeed!

Modify the program in Exercise 15.14 to count the number of words which start
with the character 's'.
Write a program that reads a list of countries in random order and displays
them in alphabetical order. Use comparison operators and functions.
Given a string
string s("123456789");
Write a program that displays the following:
1
232
34543
4567654
567898765



YVVYVVYVYVVYVYVYYVYYVYY

Key Concepts

Boolean type data
Wide-character literals
Constant casting
Static casting
Dynamic casting
Reinterpret casting
Runtime type information
Explicit constructors
Mutable member data
Namespaces

Nesting of namespaces
Operator keywords
Using new keywords
New style for headers

| 16.1 Introduction

The ISO/ANSI C++ Standard adds several
new features to the original C++
specifications. Some are added to provide
better control in certain situations and
others are added for providing conveniences
to C++ programmers. It is therefore
important to note that it is technically
possible to write full-fledged programs
without using any of the new features.
Important features added are:

1. New data types
& bool
m wchar t
2. New operators
® const_cast
static_cast
dynamic_cast
reinterpret_cast
typeid
3. Class implementation
»  Explicit constructors
m  Mutable members
4. Namespace scope



New Features of ANSI C++ Standard 0447

5. Operator keywords
6. New kevwords
7. New headers

We present here a brief overview of these features.

|16.2 New Data Types

The ANSI C++ has added two new data types to enhance the range of data types available
in C++. They are bool and wchar _t.

The bool Data Type

The data type bool has been added to hold a Boolean value, true or false. The values true
and false have been added as keywords to the C++ language. The bool type variables can
be declared as follows.

bool bl; // declare bl as bool type
bl = true; // assign true value to it
bool b2 = false; // declare and initialize

The default numeric value of true is 1 and false is 0. Therefore, the statements

cout << "bl = " << bl; // bl is true
cout << "b2 = " << h2; // b2 is false

will display the following output:

bl =1
b2 = 0

We can use the bool type variables or the values true and false in mathematical
expressions. For instance,

int x = false + 5*m - bl;
is valid and the expression on the right evaluates to 9 assuming bl is true and m is 2.
Values of type bool are automatically elevated to integers when used in non-Boolean

expressions.

It 1s possible to convert implicitly the data types pointers, integers or floating point values
to bool type. For example, the statements



448 e Object-Oriented Programming with C++

bool x = 0;
bool y = 100;
bool z = 15.75;

assign false to x and true to y and z.
Program 16.1 demonstrates the features of bool type data.

#include <iostream>

using namespace std;

int main()

{
int x1 = 10,x2 = 20,m = 2;
bool bl, b2;

bl = x1 == x2; // False
b2 = x1 < x2; // True

cout << "bl is " << bl << "\n";
cout << "b2 is " << b2 << "\n";

bool b3 = true;
cout << "b3 js " << b3 << "\n";

if(b3)

cout << "Very Good" << "\n";
else

cout << "Very Bad" << "\n";

int x3 = false + 5*m-b3;

bl = x3;

b2 = 03

cout << "x3 = " << x3 << "\n";

cout << "Now bl = " << bl << " and b2 = " << b2 << "\n";
return 0;

PROGRAM 16.

The output of Program 16.1 would be:

bl is O
b2 is 1



New Features of ANSI C++ Standard 449

b3 is 1
Very Goed
x3 =9

Now bl = 1 and b2 = 0

The wchar_t Data Type

The character type wehar_t has been defined in ANSI C++ to hold 16-bit wide characters.
The 16-bit characters are used to represent the character sets of languages that have more
than 255 characters, such as Japanese. This is important if we are writing programs for
international distribution.

ANSI C++ also introduces a new character literal known as wide_character literal which
uses two byvtes of memory. Wide_character literals begin with the letter L, as follows:

L'xy' // wide character literal

|16.3 New Operators

We have used cast operators (also known as casts or type casts) earlier in a number of
programs. As we know, casts are used to convert a value from one type to another. This is
necessary in situations where automatic conversions are not possible. We have used the
following forms of casting:

double x = double(m); /I C++ type casting
double y = (double)n; // C-type casting

Although these casts still work, ANSI C++ has added several new cast operators known
as static casts, dvnamic casts, reinterpret casts and constant casts. It also adds another
operator known as typeid to verify the types of unknown objects.

The static_cast Operator

Like the conventional cast operators, the static_cast operator is used for any standard
conversion of data types. It can also be used to cast a base class pointer into a derived class
pointer. [ts general form is:

static_cast<type>(object)

Here. tvpe specities the target type of the cast, and object is the object being cast into the
new type. Examples:

int m = 103
double x = static cast<double> (m);
char ch = static_cast<char> (m);



450 e Object-Oriented Programmung with C++

The first statement casts the variable m to type double and the second casts it to type
char.

Whyv use thizs new type when the old style still works? The syntax of the old one blends
into the rest of the lines and therefore it is difficult to locate them. The new format is easy
to =pot and o search for using automated tools.

The const_cast Operator

The const_cast operator is used to explicitly override const or volatile in a cast. [t takes
the form

const_cast<type>(object)

sSince the purpose of this operator is to change its const or volatile attributes, the target
{vpee must be the same as the source tvpe. 1t is mostly used for removing the const_ness of an
object,

The reinterpret_cast Operator

The reinterpret_cast is used to change one type into a fundamentally different type. For
example, it can he used to change a pointer type object to integer type object or vice versa. It
takes the following form:

reinterpret cast<type>(object)

This operator should be used for casting inherently incompatible types. Examples:

int m;

filoat x;

int™ intptir;

float* floatptr;

intptr = reinterpret cast<int*> (m);
floatptr = reinterpret cast<float*> (x);

The dynamic_cast Operator

The dynamic cast is used to cast the type of an object at runtime. [ts main application is to
perform casts on polvmorphic objects. Recall that polymorphic objects are created by base
clanses that contain virtual functions. It takes the form:

dynamic_cast<type>(object)

The object is a base class object whose type is to be checked and casted. It casts the type
of object to fvpe. Tt never performs an invalid conversion. It checks that the conversion is
legal at runtime. If the conversion is not valid, it returns NULL.



